The Importance of Generalization in Automated Proof

Ken McMillan
Microsoft Research

Aws Albarghouthi
University of Toronto

Generalization

- Many reasoning methods rely on generalization from particular cases for their performance
 - SAT/SMT solvers
 - Abstract interpretation
 - CEGAR, lazy abstraction, etc.
 - Interpolation, IC3, etc.
- In this talk, I will argue:
 - The evidence for these generalizations is weak
 - This motivates a retrospective approach: revisiting prior generalizations in light of new evidence

Criteria for generalization

 A generalization is in inference that in some way covers a particular case

Example: a learned clause in a SAT solver

- We require two properties of a generalization:
 - Correctness: it must be true
 - Utility: it must make our proof task easier

A useful inference is one that occurs in a simple proof

Let us consider what evidence we might produce for correctness and utility of a given inference...

What evidence can we provide?

- Evidence for correctness:
 - Proof (best)
 - Bounded proof (pretty good)
 - True in a few cases (weak)
- Evidence for utility:
 - Useful for one truth assignment
 - Useful for one program path

CDCL SAT solvers

- A learned clause is a generalization
- Evidence for correctness:
 - Proof by resolution (strong!)
- Evidence for utility:
 - Simplifies proof of current assignment (weak!)
 - In fact, CDCL solvers produce many clauses of low utility that are later deleted.
- Retrospection
 - CDCL has a mechanism of revisiting prior generalization in the light of new evidence
 - This is called "non-chronological backtracking"

Retrospection in CDCL

The decision stack:

 $C\downarrow 1$ drops out of the proof on backtrack!

Learned clause $C \downarrow 1$ contradicts $\neg x$ Backtrack to here

- CDCL can replace an old generalization with a new one that covers more cases
 - That is, utility evidence of the new clause is better

Retrospection in CEGAR

Retrospection and Lazy SMT

- Lazy SMT is a form of CEGAR
 - "program path" → truth assignment (disjunct in DNF)
 - A theory lemma is a generalization
- Evidence for correctness: proof
- Evidence for utility: Handles one disjunct
 - Can lead to many irrelevant theory lemmas
- Difficulties of retrospection in lazy SMT
 - Incrementally revising theory lemmas
 - Architecture may prohibit useful generalizations

Diamond example with lazy SMT

Theory lemmas correspond to program paths:

$$\neg(x \downarrow 1 = x \downarrow 0 + 1 \land x \downarrow 2 = x \downarrow 1 + 1 \land x \downarrow 3 = x \downarrow 2 \land x \downarrow 4 = x \downarrow 3 \land x \downarrow 4 < x \downarrow 0)$$

$$\neg(x \downarrow 1 = x \downarrow 0 \land x \downarrow 2 = x \downarrow 1 \land x \downarrow 3 = x \downarrow 2 + 1 \land x \downarrow 4 = x \downarrow 3 + 1 \land x \downarrow 4 < x \downarrow 0)$$

... (16 lemmas, exponential in number of diamonds)

- Lemmas have low utility because each covers only once case
- Lazy SMT framework does not allow higher utility inferences

Diamond example (cont.)

- We can produce higher utility inferences by structurally decomposing the problem
 - Each covers many paths
 - Proof is linear in number of diamonds

Compositional SMT

- To prove unsatisfiability of $A \land B$...
 - Infer an interpolant I such that $A \rightarrow I$ and $B \rightarrow \neg I$.
 - The interpolant decomposes the proof structurally
 - Enumerate disjuncts (samples) of A,B separately.

Chose / to cover the samples as simply as possible

With each new sample, we reconsider the interpolant to maximize utility

Example in linear rational arithmetic

$$A = (x \le 1 \land y \le 3) \qquad A \downarrow 1 \qquad B = (x \ge 2 \land y \ge 3) \qquad B \downarrow 1$$

$$\lor (1 \le x \le 2 \land y \le 2) \qquad A \downarrow 2 \qquad \lor (x \ge 3 \land 2 \le y \le 3) \qquad B \downarrow 2$$

$$\lor (2 \le x \le 3 \land y \le 1) \qquad A \downarrow 3$$

 A and Bcan be seen as sets of convex polytopes

An interpolant *I* is a separator for these sets.

Compositional approach

- 1. Choose two samples from A and B and compute an interpolant $y \le 2.5$
- 2. Add new sample $A \downarrow 1$ containing point (1,3) and update interpolant to $x+y \le 4$
- 3. Interpolant now covers all disjuncts

Notice we reconsidered our first interpolant choice in Reintoff farther evidence.

Comparison to Lazy SMT

Interpolant from a lazy SMT solver proof:

```
(x \le 2 \land y \le 2) \lor
((x \le 1 \lor y \le 1) \land
((x \le 2 \land y \le 2) \lor
(x \le 1 \lor y \le 1)))
```


- Each half-space corresponds to a theory lemma
- Theory lemmas have low utility
 - Four lemmas cover six cases

Why is the simpler proof better?

 A simple fact that covers many case may indicate an emerging pattern...

- Greater complexity allows overfitting
- Especially important in invariant generation

Finding simple interpolants

- We break this problem into two parts
 - Search for large subsets of the samples that can be separated by linear half-spaces.
 - Synthesize an interpolant as a Boolean combination of these separators.

The first part can be accomplished by well-established methods, using an LP solver and Farkas' lemma. The Boolean function synthesis problem is also well studied, though we may wish to use more light-weight methods.

Farkas' lemma and linear separators

 Farkas' lemma says that inconsistent rational linear constraints can be refuted by summation:

- The proof of unsat can be found by an LP solver
- We can use this to discover a linear interpolant for two sets of convex polytopes $S \downarrow A$ and $S \downarrow B$.

Finding separating half-spaces

- Use LP to simultaneously solve for:
 - A linear separator of the form *cx*≤*b*
 - A proof that $A \downarrow i \rightarrow I$ for each $A \downarrow i$ in $S \downarrow A$
 - A proof that $B \downarrow i \rightarrow \neg I$ for each $B \downarrow i$ in $S \downarrow A$
- The separator I is an interpolant for $S \downarrow A \land S \downarrow B$
- The evidence for utility of I is the size of S\(\psi\)A
 and S\(\psi\)B
 - Thus, we search for large sample sets that can be linearly separated.
 - We can also make / simpler by setting as many coefficients in c to zero as possible.

Half-spaces to interpolants

• When every pair of samples in $S \downarrow A \times S \downarrow B$ are separated by some half space, we can build an interpolant as a Boolean combination.

In practice, we don't have to synthesize an optimal combination

Sequential verification

- We can extend our notions of evidence and retrospection to sequential verification
 - A "case" may be some sequence of program steps
 - Consider a simple sequential program:

```
x = y = 0;
while (*) \leftarrow Wish to discover invariant:
x++; y++;
while (x != 0) \leftarrow {y \le x}
x--; y--;
assert (y <= 0);
```

Execute the loops twice

Choose interpolants at each step, in hope of obtaining inductive invariant.

- These interpolants cover all the cases with just one predicate.
- In fact, they are inductive.

- These predicates have low utility, since each covers just one case.
- As a result, we "overfit" and do not discover the emerging pattern.

Sequential interpolation strategy

- Compute interpolants for all steps simultaneously
 - Collect A (pre) and B (post) samples at each step
 - Utility of a half-space measured by how many sample pairs it separates in total.

- Step 0: low evidence
- Step 1: better evidence

 $y \leq 0$ (bad!)

Value of retrospection

- 30 small programs over integers
 - Tricky inductive invariants involving linear constraints
 - Some disjunctive, most conjunctive

Tool		CPA Checker		InvGen with Al	
% solved	100	57	57	70	60

- Better evidence for generalizations
 - Better fits the observed cases
 - Results in better convergence
- Still must trade off cost v. utility in generalizing
 - Avoid excessive search while maintaining convergence

Value of retrospection (cont)

- Bounded model checking of inc/dec program
- Apply compositional SMT to the BMC unfolding
 - First half of unfolding is A, second half is B
- Compare to standard lazy SMT using Z3

Example: IC3

- Evidence for correctness: bounded proof
 - New clause may fail to propagate
- Evidence for utility: covers one bad state
- Questions:
 - Is it worthwhile to revisit generalizations?
 - What kind of search procedure can we use?
 - How would the architecture have to change?

For any technique based on generalization, we can ask these questions

Conclusion

- Many automated reasoning methods rely on generalization from cases
 - Useful to the extent the make the proof simpler
- Evidence of utility in existing methods very weak
 - Usually amounts to utility in one case
 - Can lead to many useless inferences
- Retrospection: revisit inferences on new evidence
 - For example, non-chronological backtracking
 - Allows more global view of the problem
 - Reduces commitment to inferences based on little evidence

Conclusion (cont)

- Compositional SMT
 - Modular approach to interpolation
 - Find simple proofs covering many cases
 - Constraint-based search method
 - Improves convergence of invariant discovery
 - Exposes emerging pattern in loop unfoldings
- Think about methods in terms of
 - What generalizations?
 - Quality of evidence for correctness and utility
 - Cost v. benefit of the evidence provided

Cost of retrospection

- Early retrospective approach due to Anubhav Gupta
 - Finite-state localization abstraction method
 - Finds optimal localization covering all abstract cex's.
 - In practice, "quick and dirty" often better than optimal
- Compositional SMT usually slower than direct SMT
- However, if bad generalizations imply divergence, then the cost of retrospection is justified.
 - Need to understand when revisiting generalizations is justified.